PyJKS Documentation
Release 20.0.0

Kurt Rose and contributors

May 23, 2020

Contents

1 Examples
2 Installation

3 Contents:

3.1 Examples . . . L e e e e e e e
3.2 CONCEPLS . v v v v e e e e e e e e e e e e e e e e e e
3.3 JKS and JCEKS KeyStores v v v v i i e e e e e e e e e e e e e e e e e e e
3.4 BouncyCastle Keystores (BKSand UBER)

3.5 Exceptions
4 Indices and tables
Python Module Index

Index

25

27

29

PyJKS Documentation, Release 20.0.0

PyJKS is the pure-Python library for Java KeyStore (JKS) parsing, decryption, and manipulation. PyJKS supports
vanilla JKS, JCEKS, BKS, and UBER (BouncyCastle) keystore formats.

In the past, Python projects relied on external tools (keytool), intermediate formats (PKCSI2 and PEM), and the JVM
to work with encrypted material locked within JKS files. Now, PyJKS changes that.

Contents 1

PyJKS Documentation, Release 20.0.0

2 Contents

CHAPTER 1

Examples

See the Examples page for usage examples of PyJKS.

PyJKS Documentation, Release 20.0.0

4 Chapter 1. Examples

CHAPTER 2

Installation

You can install py jks with pip:

$ pip install pyJjks

If you receive an error like:

error: Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual C++ Build,
—Tools": https://visualstudio.microsoft.com/downloads/

on Windows you will need to download the Visual C++ build tools by visiting https://visualstudio.microsoft.com/
thank-you-downloading-visual-studio/?sku=BuildTools&rel=16

Save the file, then run it. Choose “Workloads” tab, then select the “C++ build tools”. Under the “Optional” installed
items, be certain to select all of MSVC vxxx — VS 2019 C++ build tools,Windows 10 SDK (latest ver-
sion), and C++/CLI support for build tools. Reboot, then run the pip command again.

https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16

PyJKS Documentation, Release 20.0.0

6 Chapter 2. Installation

CHAPTER 3

Contents:

3.1 Examples

Building an OpenSSL context using a JKS through PyJKS:

import jks
import OpenSSL

ASN1 = OpenSSL.crypto.FILETYPE_ASNI1
def jksfile2context (jks_file, passphrase, key_alias, key_password=None) :

keystore = jks.KeyStore.load(jks_file, passphrase)
pk_entry = keystore.private_keys[key_alias]

1f the key could not be decrypted using the store password,
decrypt with a custom password now
if not pk_entry.is_decrypted() :

pk_entry.decrypt (key_password)

pkey = OpenSSL.crypto.load_privatekey (ASN1l, pk_entry.pkey)
public_cert = OpenSSL.crypto.load_certificate (ASN1l, pk_entry.cert_chain[0][1])
trusted_certs = [OpenSSL.crypto.load_certificate (ASN1l, cert.cert)

for alias, cert in keystore.certs]

ctx = OpenSSL.SSL.Context (OpenSSL.SSL.TLSv1l_METHOD)
ctx.use_privatekey (pkey)
ctx.use_certificate (public_cert)
ctx.check_privatekey () # want to know ASAP if there is a problem
cert_store = ctx.get_cert_store()
for cert in trusted_certs:

cert_store.add_cert (cert)

return ctx

PyJKS Documentation, Release 20.0.0

Reading a JKS or JCEKS keystore and dumping out its contents in the PEM format:

from _ future import print_function
import sys, base64, textwrap
import jks

def print_pem(der_bytes, type):

print ("-———— BEGIN %s————- " % type)
print ("\r\n".join (textwrap.wrap (base64.b64encode (der_bytes) .decode ('ascii'), 64)))
print ("-———- END &s———-—— " % type)

ks = jks.KeyStore.load("keystore. jks", "XXXXXXXX")

1f any of the keys in the store use a password that is not the same as the store,
—password:

ks.entries["keyl"].decrypt ("key_password")

for alias, pk in ks.private_keys.items():
print ("Private key: %s" % pk.alias)
if pk.algorithm_oid == jks.util.RSA_ENCRYPTION_OID:
print_pem(pk.pkey, "RSA PRIVATE KEY")
else:

print_pem(pk.pkey_pkcs8, "PRIVATE KEY")
for ¢ in pk.cert_chain:

print_pem(c([1l], "CERTIFICATE")
print ()

for alias, c in ks.certs.items():

print ("Certificate: 2s" % c.alias)
print_pem(c.cert, "CERTIFICATE")
print ()

for alias, sk in ks.secret_keys.items () :

print ("Secret key: £s" % sk.alias)

print (" Algorithm: 2s" % sk.algorithm)

print (" Key size: %d bits" % sk.key_size)

print (" Key: ¢s" % "".Join("{:02x}".format (b) for b in bytearray(sk.key)))
print ()

Generating a basic self signed certificate with OpenSSL and saving it in a jks keystore:

import OpenSSL
import jks

generate key
key = OpenSSL.crypto.PKey ()
key.generate_key (OpenSSL.crypto.TYPE_RSA, 2048)

generate a self signed certificate

cert = OpenSSL.crypto.X509()
cert.get_subject () .CN = 'my.server.example.com'
cert.set_serial_number (473289472)
cert.gmtime_adj_notBefore (0)
cert.gmtime_adj_notAfter (365x24x60%60)
cert.set_issuer (cert.get_subject())
cert.set_pubkey (key)

cert.sign (key, 'sha256")

(continues on next page)

8 Chapter 3. Contents:

PyJKS Documentation, Release 20.0.0

(continued from previous page)

dumping the key and cert to ASNI
dumped_cert = OpenSSL.crypto.dump_certificate (OpenSSL.crypto.FILETYPE_ASN1l, cert)
dumped_key = OpenSSL.crypto.dump_privatekey (OpenSSL.crypto.FILETYPE_ASN1, key)

creating a private key entry
pke = jks.PrivateKeyEntry.new('self signed cert', [dumped_cert], dumped_key, 'rsa_ raw

;)')

1f we want the private key entry to have a unique password, we can encrypt it
—beforehand

1f it is not ecrypted when saved, it will be encrypted with the same password as,,
—~the keystore

#pke.encrypt ('my_private_ key_password')

creating a jks keystore with the private key, and saving it
keystore = jks.KeyStore.new('jks', [pkel)
keystore.save ('./my_keystore. jks', 'my_password')

3.2 Concepts

3.2.1 Store and entry passwords

Java Kkeystores usually involve two kinds of passwords:
» Passwords to protect individual key entries
* A password to protect the integrity of the keystore as a whole

These passwords serve different purposes: the individual key passwords serve as secret material for encrypting the
entries with a PBE algorithm (Password-Based Encryption). The store password is typically used to detect tampering
of the store by using it as part of the input to a cryptographic hash calculation or as a key for a MAC.

In the general case, each entry in the store can have a different password associated with it, with an additional final
password being used for the keystore integrity check. To reduce the amount of passwords that needs to be kept track of
though, it is common for a single password to be used for both the store integrity as well as all individual key entries.

To support the common case where key entries are protected using the store password, the 1oad and 1oads class
functions exposed by the different supported store types in pyjks contain a t ry_decrypt_keys keyword argument.

If set to True, the function will automatically try to decrypt each key entry it encounters using the store password.
Any entry that fails to decrypt with the store password must therefore have been stored using a different password, and
is left alone for the user to manually call decrypt () on afterwards.

3.2.2 Store types

JKS:
» Key protection algorithm: proprietary JavaSoft algorithm (1.3.6.1.4.1.42.2.17.1.1)
* Store signature algorithm: SHA-1 hash
JCEKS:
* Key protection algorithm: proprietary PBE_WITH_MDS5_AND_DES3_CBC (1.3.6.1.4.1.42.2.19.1)
 Store signature algorithm: SHA-1 hash

3.2. Concepts 9

PyJKS Documentation, Release 20.0.0

BKS:
» Key protection algorithm: PBEWithSHAAnd3KeyTripleDESCBC (1.2.840.113549.1.12.1.3)
* Store signature algorithm: HMAC-SHA1

UBER:
» Key protection algorithm: PBEWithSHAAnd3KeyTripleDESCBC (1.2.840.113549.1.12.1.3)
* Store signature algorithm: SHA-1 hash
e Store encryption algorithm: PBEWithSHA AndTwofishCBC (unknown OID, proprietary?)

3.3 JKS and JCEKS keystores

3.3.1 Background

The JKS keystore format is the format that originally shipped with Java. It is implemented by the traditional “Sun”
cryptography provider.

JCEKS is an improved keystore format introduced with the Java Cryptography Extension (JCE). It is implemented by
the SunJCE cryptography provider.

JCEKS keystores improve upon JKS keystores in 2 ways:
* A stronger key protection algorithm is used

* They allow for arbitrary (symmetric) secret keys to be stored (e.g. AES, DES, etc.)

3.3.2 Store types

class jks. jks.KeyStore (store_type, entries)
Bases: jks.util.AbstractKeystore

Represents a loaded JKS or JCEKS keystore.

entries
A dictionary of all entries in the keystore, mapped by alias.

store_type
A string indicating the type of keystore that was loaded. Can be one of jks, jceks.

classmethod load (filename, store_password, try_decrypt_keys=True)
Convenience wrapper function; reads the contents of the given file and passes it through to 1oads (). See
loads ().

classmethod loads (data, store_password, try_decrypt_keys=True)
Loads the given keystore file using the supplied password for verifying its integrity, and returns a
KeyStore instance.

Note that entries in the store that represent some form of cryptographic key material are stored in encrypted
form, and therefore require decryption before becoming accessible.

Upon original creation of a key entry in a Java keystore, users are presented with the choice to either use
the same password as the store password, or use a custom one. The most common choice is to use the store
password for the individual key entries as well.

For ease of use in this typical scenario, this function will attempt to decrypt each key entry it encounters
with the store password:

10 Chapter 3. Contents:

PyJKS Documentation, Release 20.0.0

* If the key can be successfully decrypted with the store password, the entry is returned in its decrypted
form, and its attributes are immediately accessible.

* If the key cannot be decrypted with the store password, the entry is returned in its encrypted form, and
requires a manual follow-up decrypt(key_password) call from the user before its individual attributes
become accessible.

Setting try_decrypt_keys to False disables this automatic decryption attempt, and returns all key
entries in encrypted form.

You can query whether a returned entry object has already been decrypted by calling the
is_decrypted () method on it. Attempting to access attributes of an entry that has not yet been de-
crypted will result in a Not YetDecryptedException.

Parameters
* data (bytes) — Byte string representation of the keystore to be loaded.
* password (st r) — Keystore password string

* try_decrypt_keys (bool) — Whether to automatically try to decrypt any encoun-
tered key entries using the same password as the keystore password.

Returns

A loaded KeyStore instance, if the keystore could be successfully parsed and the supplied
store password is correct.

If the try_decrypt_keys parameter was set to True, any keys that could be success-
fully decrypted using the store password have already been decrypted; otherwise, no atttempt
to decrypt any key entries is made.

Raises
* BadKeystoreFormatException — If the keystore is malformed in some way

* UnsupportedKeystoreVersionException — If the keystore contains an un-
known format version number

* KeystoreSignatureException — If the keystore signature could not be verified
using the supplied store password

* DuplicateAliasException — If the keystore contains duplicate aliases

classmethod new (sftore_type, store_entries)

Helper function to create a new KeyStore.
Parameters

* store_type (string)— What kind of keystore the store should be. Valid options are
jks or jceks.

* store_entries (1ist)— Existing entries that should be added to the keystore.
Returns A loaded KeyStore instance, with the specified entries.
Raises

e DuplicateAliasException — If some of the entries have the same alias.

* UnsupportedKeyStoreTypeException - If the keystore is of an unsupported type

* UnsupportedKeyStoreEntryTypeException — If some of the keystore entries
are unsupported (in this keystore type)

3.3.

JKS and JCEKS keystores 11

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

PyJKS Documentation, Release 20.0.0

save (filename, store_password)
Convenience wrapper function; calls the saves () and saves the content to a file.

saves (store_password)
Saves the keystore so that it can be read by other applications.

If any of the private keys are unencrypted, they will be encrypted with the same password as the keystore.

Parameters store_password (st r)— Password for the created keystore (and for any unen-
crypted keys)

Returns A byte string representation of the keystore.
Raises
* UnsupportedKeystoreTypeException—If the keystore is of an unsupported type

* UnsupportedKeystoreEntryTypeException — If the keystore contains an un-
supported entry type

certs
A subset of the ent ries dictionary, filtered down to only those entries of type TrustedCertEntry.

private_keys
A subset of the ent ries dictionary, filtered down to only those entries of type PrivateKeyEntry.

secret_keys
A subset of the ent ries dictionary, filtered down to only those entries of type SecretKeyEntry.

3.3.3 Entry types
class jks. jks.TrustedCertEntry (**kwargs)
Bases: jks.util.AbstractKeystoreEntry
Represents a trusted certificate entry in a JKS or JCEKS keystore.

decrypt (key_password)
Does nothing for this entry type; certificates are inherently public data and are not stored in encrypted
form.

encrypt (key_password)
Does nothing for this entry type; certificates are inherently public data and are not stored in encrypted
form.

is_decrypted()
Always returns True for this entry type.

classmethod new (alias, cert)
Helper function to create a new TrustedCertEntry.

Parameters
* alias (str)— The alias for the Trusted Cert Entry
* certs (str)— The certificate, as a byte string.
Returns A loaded TrustedCertEntry instance, ready to be placed in a keystore.

cert = None
A byte string containing the actual certificate data. In the case of X.509 certificates, this is the DER-
encoded X.509 representation of the certificate.

type = None
A string indicating the type of certificate. Unless in exotic applications, this is usually X.5009.

12 Chapter 3. Contents:

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyJKS Documentation, Release 20.0.0

class jks. jks.PrivateKeyEntry (**kwargs)
Bases: jks.util.AbstractKeystoreEntry

Represents a private key entry in a JKS or JCEKS keystore (e.g. an RSA or DSA private key).

pkey

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keys on jks. jks.KeyStore.
loads ().

A byte string containing the value of the privateKey field of the PKCS#8 PrivateKeyInfo repre-
sentation of the private key. See RFC 5208, section 5: Private-Key Information Syntax.

pkey_pkcs8

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keys on jks. jks.KeyStore.
loads ().

A byte string containing the DER-encoded PKCS#8 PrivateKeyInfo representation of the private key.
See RFC 5208, section 5: Private-Key Information Syntax.

algorithm oid

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keys on jks. jks.KeyStore.
loads ().

A tuple of integers corresponding to the algorithm OID for which the private key is valid.
Common values include:

e (1,2,840,113549,1,1,1) (alias rsaEncryption)

* (1,2,840,10040,4,1) (alias id-dsa).

cert_chain = None
A list of tuples, representing the certificate chain associated with the private key. Each element of the list
of a 2-tuple containing the following data:

e [0]: A string indicating the type of certificate. Unless in exotic applications, this is usually X.509.

e [1]: A byte string containing the actual certificate data. In the case of X.509 certificates, this is the
DER-encoded X.509 representation of the certificate.

classmethod new (alias, certs, key, key_format="pkcs8’)
Helper function to create a new PrivateKeyEntry.

Parameters
* alias (str) - The alias for the Private Key Entry

* certs (1ist)— An list of certificates, as byte strings. The first one should be the one
belonging to the private key, the others the chain (in correct order).

3.3. JKS and JCEKS keystores 13

https://tools.ietf.org/html/rfc5208#section-5
https://tools.ietf.org/html/rfc5208#section-5
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyJKS Documentation, Release 20.0.0

* key (str) — A byte string containing the private key in the format specified in the
key_format parameter (default pkcsS).

* key_format (str)— The format of the provided private key. Valid options are pkcs8
or rsa_raw. Defaults to pkcs8.

Returns A loaded PrivateKeyEnt ry instance, ready to be placed in a keystore.
Raises UnsupportedKeyFormatException — If the key format is unsupported.

is_decrypted ()
Returns True if the entry has already been decrypted, False otherwise.

decrypt (key_password)
Decrypts the entry using the given password. Has no effect if the entry has already been decrypted.

Parameters key_password (st r)— The password to decrypt the entry with. If the entry was
loaded from a JCEKS keystore, the password must not contain any characters outside of the
ASCII character set.

Raises

* DecryptionFailureException — If the entry could not be decrypted using the
given password.

* UnexpectedAlgorithmException — If the entry was encrypted with an unknown
or unexpected algorithm

* ValueError —If the entry was loaded from a JCEKS keystore and the password contains
non-ASCII characters.

encrypt (key_password)
Encrypts the private key, so that it can be saved to a keystore.

This will make it necessary to decrypt it again if it is going to be used later. Has no effect if the entry is
already encrypted.

Parameters key password (st r)— The password to encrypt the entry with.

class jks. jks.SecretKeyEntry (**kwargs)
Bases: jks.util.AbstractKeystoreEntry

Represents a secret (symmetric) key entry in a JCEKS keystore (e.g. an AES or DES key).
algorithm

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keys on jks. jks.KeyStore.
loads ().

A string containing the name of the algorithm for which the key is valid, as known to the Java cryptography
provider that supplied the corresponding SecretKey object.

key

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keys on jks. jks.KeyStore.
loads ().

14 Chapter 3. Contents:

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

PyJKS Documentation, Release 20.0.0

A byte string containing the raw secret key.

key_size

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keys on jks. jks.KeyStore.
loads ().

An integer containing the size of the key, in bits. For DES and 3DES keys, the sizes 64 bits resp. 192 bits
are returned.

classmethod new (alias, sealed_obj, algorithm, key, key_size)
Helper function to create a new SecretKeyEntry.

Returns A loaded SecretKeyEntry instance, ready to be placed in a keystore.

is_decrypted()
Returns True if the entry has already been decrypted, False otherwise.

decrypt (key_password)
Decrypts the entry using the given password. Has no effect if the entry has already been decrypted.

Parameters key_password (st r) — The password to decrypt the entry with. Must not con-
tain any characters outside of the ASCII character set.

Raises

* DecryptionFailureException — If the entry could not be decrypted using the
given password.

* UnexpectedAlgorithmException — If the entry was encrypted with an unknown
or unexpected algorithm

* ValueError - If the password contains non-ASCII characters.

encrypt (key_password)
Encrypts the Secret Key so that the keystore can be saved

3.4 BouncyCastle Keystores (BKS and UBER)

This module implements readers for keystores created by the BouncyCastle cryptographic provider for Java.

3.4.1 Store types

Pyjks supports two BouncyCastle store types:
* BKS
* UBER

Neither BKS or JKS/JCEKS stores make any effort to hide how many entries are present in the store, what their aliases
are, and what type of key each entry contains. The keys inside each entry are still protected, and the store is protected
against tampering via the store password, but anyone can still see the names and types of keys inside.

UBER keystores are similar to BKS, but they have an additional design goal: protect the store from introspection. This
is done by additionally encrypting the entire keystore using (a key derived from) the store password.

3.4. BouncyCastle Keystores (BKS and UBER) 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

PyJKS Documentation, Release 20.0.0

class jks.bks.BksKeyStore (store_type, entries, version=2)
Bases: jks.util.AbstractKeystore

Bouncycastle “BKS” keystore parser. Supports both the current V2 and old V1 formats.

entries
A dictionary of all entries in the keystore, mapped by alias.

store_type
A string indicating the type of keystore that was loaded. Equals bk s for instances of this class.

classmethod load (filename, store_password, try_decrypt_keys=True)
Convenience wrapper function; reads the contents of the given file and passes it through to 1 oads (). See
loads ().

classmethod loads (data, store_password, try_decrypt_keys=True)
See jks. jks.KeyStore.loads ().

Parameters
* data (bytes) — Byte string representation of the keystore to be loaded.
* password (str)— Keystore password string

* try decrypt keys (bool) — Whether to automatically try to decrypt any encoun-
tered key entries using the same password as the keystore password.

Returns

A loaded BksKeyStore instance, if the keystore could be successfully parsed and the
supplied store password is correct.

If the try_decrypt_keys parameters was set to True, any keys that could be success-
fully decrypted using the store password have already been decrypted; otherwise, no atttempt
to decrypt any key entries is made.

Raises
* BadKeystoreFormatException — If the keystore is malformed in some way

* UnsupportedKeystoreVersionException — If the keystore contains an un-
known format version number

* KeystoreSignatureException — If the keystore signature could not be verified
using the supplied store password

* DuplicateAliasException — If the keystore contains duplicate aliases

save (filename, store_password)
Convenience wrapper function; calls the saves () and saves the content to a file.

certs
A subset of the entries dictionary, filtered down to only those entries of type
BksTrustedCertEntry.

plain_keys
A subset of the ent ries dictionary, filtered down to only those entries of type BksKeyEntry.

sealed_keys
A subset of the ent ries dictionary, filtered down to only those entries of type BksSealedKeyEntry.

secret_keys
A subset of the ent ries dictionary, filtered down to only those entries of type BksSecretKeyEntry.

16 Chapter 3. Contents:

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyJKS Documentation, Release 20.0.0

version = None
Version of the keystore format, if loaded.

class jks.bks.UberKeyStore (store_type, entries, version=1)
Bases: jks.bks.BksKeyStore

BouncyCastle “UBER” keystore format parser.

entries

A dictionary of all entries in the keystore, mapped by alias.

store_type

A string indicating the type of keystore that was loaded. Equals uber for instances of this class.

classmethod

load (filename, store_password, try_decrypt_keys=True)

Convenience wrapper function; reads the contents of the given file and passes it through to 1oads (). See

loads ().

classmethod

loads (data, store_password, try_decrypt_keys=True)

See jks. jks.KeyStore.loads ().

Parameters

data (bytes) — Byte string representation of the keystore to be loaded.
password (st r) — Keystore password string

try_decrypt_keys (bool) — Whether to automatically try to decrypt any encoun-
tered key entries using the same password as the keystore password.

Returns

A

loaded UberKeyStore instance, if the keystore could be successfully parsed and the

supplied store password is correct.

If the try_decrypt_keys parameters was set to True, any keys that could be success-
fully decrypted using the store password have already been decrypted; otherwise, no atttempt

to

decrypt any key entries is made.

Raises

save (filename,

BadKeystoreFormatException — If the keystore is malformed in some way

UnsupportedKeystoreVersionException — If the keystore contains an un-
known format version number

KeystoreSignatureException — If the keystore signature could not be verified
using the supplied store password

DecryptionFailureException — If the keystore contents could not be decrypted
using the supplied store password

DuplicateAliasException — If the keystore contains duplicate aliases

store_password)

Convenience wrapper function; calls the saves () and saves the content to a file.

certs
A subset of the entries dictionary, filtered down to only those entries of type
BksTrustedCertEntry.
plain_keys
A subset of the ent ries dictionary, filtered down to only those entries of type BksKeyEntry.
3.4. BouncyCastle Keystores (BKS and UBER) 17

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyJKS Documentation, Release 20.0.0

sealed_keys
A subset of the ent ries dictionary, filtered down to only those entries of type BksSealedKeyEntry.

secret_keys
A subset of the ent ries dictionary, filtered down to only those entries of type BksSecretKeyEntry.

version = None
Version of the keystore format, if loaded.

3.4.2 Entry types

jks.bks.KEY_TYPE PRIVATE = 0
Type indicator for private keys in BksKeyEntry.

jks.bks.KEY_TYPE_PUBLIC =1
Type indicator for public keys in BksKeyEntry.

jks.bks.KEY_TYPE_SECRET = 2

Type indicator for secret keys in BksKeyEntry. Indicates a key for use with a symmetric encryption algo-
rithm.

class jks.bks.BksTrustedCertEntry (**kwargs)
Bases: jks. jks.TrustedCertEntry

Represents a trusted certificate entry in a BKS or UBER keystore.

type
A string indicating the type of certificate. Unless in exotic applications, this is usually X.509.

cert

A byte string containing the actual certificate data. In the case of X.509 certificates, this is the DER-
encoded X.509 representation of the certificate.

decrypt (key_password)

Does nothing for this entry type; certificates are inherently public data and are not stored in encrypted
form.

encrypt (key_password)

Does nothing for this entry type; certificates are inherently public data and are not stored in encrypted
form.

is_decrypted ()
Always returns True for this entry type.

classmethod new (alias, cert)
Helper function to create a new TrustedCertEntry.

Parameters
* alias (str)— The alias for the Trusted Cert Entry
* certs (str) - The certificate, as a byte string.
Returns A loaded TrustedCertEntry instance, ready to be placed in a keystore.

class jks.bks.BksKeyEntry (type, format, algorithm, encoded, **kwargs)
Bases: jks.bks.AbstractBksEntry

Represents a non-encrypted cryptographic key (public, private or secret) stored in a BKS keystore. May excep-
tionally appear as a top-level entry type in (very) old keystores, but you are most likely to encounter these as the
nested object inside a BksSealedKeyEntry once decrypted.

When typeis KEY_TYPE_PRIVATE, the following attributes are available:

18 Chapter 3. Contents:

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyJKS Documentation, Release 20.0.0

pkey

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keyson loads ().

A Dbyte string containing the value of the privateKey field of the PKCS#8
PrivateKeyInfo representation of the private key. See RFC 5208, section 5: Private-Key
Information Syntax.

pkey_pkcs8

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keys on Ioads ().

A byte string containing the DER-encoded PKCS#8 PrivateKeyInfo representation of the
private key. See RFC 5208, section 5: Private-Key Information Syntax.

algorithm oid

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keyson loads ().

A tuple of integers corresponding to the algorithm OID for which the private key is valid.

Common values include:
* (1,2,840,113549,1,1,1) (alias rsaEncryption)
e (1,2,840,10040,4,1) (alias id—dsa).

When typeis KEY_TYPE_PUBLIC, the following attributes are available:

public_key

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keyson loads ().

A byte string containing the value of the subjectPublicKey field of the X.509
SubjectPublicKeyInfo representation of the public key. See RFC 5280, Appendix A.
Pseudo-ASN.1 Structures and OIDs.

public_key_info

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keyson loads ().

A byte string containing the DER-encoded X.509 SubjectPublicKeyInfo representation
of the public key. See RFC 5280, Appendix A. Pseudo-ASN.1 Structures and OIDs.

3.4.

BouncyCastle Keystores (BKS and UBER) 19

https://tools.ietf.org/html/rfc5208#section-5
https://tools.ietf.org/html/rfc5208#section-5
https://tools.ietf.org/html/rfc5208#section-5
https://tools.ietf.org/html/rfc5280#appendix-A
https://tools.ietf.org/html/rfc5280#appendix-A
https://tools.ietf.org/html/rfc5280#appendix-A

PyJKS Documentation, Release 20.0.0

algorithm oid

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keyson loads ().

A tuple of integers corresponding to the algorithm OID for which the public key is valid.

Common values include:
* (1,2,840,113549,1,1,1) (alias rsaEncryption)
e (1,2,840,10040,4,1) (alias id-dsa).

When typeis KEY_TYPE_SECRET, the following attributes are available:

key

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keyson loads ().

A byte string containing the raw secret key.

key_size

Note: Only accessible after a call to decrypt (); until then, accessing this attribute will raise
a NotYetDecryptedException. See also try_decrypt_keyson loads ().

An integer containing the size of the key, in bits. For DES and 3DES keys, the sizes 64 bits resp.
192 bits are returned.

type = None
An integer indicating the type of key: one of KEY_TYPE_PRIVATE, KEY_TYPE_PUBLIC,
KEY_TYPE_SECRET.

format = None

A string indicating the format or encoding in which the key is stored. One of: PKCS8, PKCS#8, X.509,
X509, RAW.

algorithm = None
A string indicating the algorithm for which the key is valid.

encoded = None
A byte string containing the key, formatted as indicated by the format attribute.

is_decrypted()
Always returns True for this entry type.

decrypt (key_password)
Does nothing for this entry type; these entries are stored in non-encrypted form.

classmethod type2str (7)

Returns a string representation of the given key type. Returns one of PRIVATE, PURLIC or SECRET, or
None if no such key type is known.

Parameters t (int) — Key type constant. One of KEY_TYPE PRIVATE,
KEY_TYPE_PUBLIC,KEY_ TYPE_SECRET

20 Chapter 3. Contents:

https://docs.python.org/3/library/functions.html#int

PyJKS Documentation, Release 20.0.0

encrypt (key_password)
Encrypts the entry using the given password, so that it can be saved.

Parameters key_password (st r) — The password to encrypt the entry with.

classmethod new (alias)
Helper function to create a new KeyStoreEntry.

class jks.bks.BksSecretKeyEntry (**kwargs)
Bases: jks.bks.AbstractBksEntry

Conceptually similar to, but not to be confused with, BksKeyEnt ry objects of type KEY _TYPE_SECRET:

* BksSecretKeyEntry objects store the result of arbitrary user-supplied byte[]s, which, per the Java
Keystore SPI, keystores are obligated to assume have already been protected by the user in some unspeci-
fied way. Because of this assumption, no password is provided for these entries when adding them to the
keystore, and keystores are thus forced to store these bytes as-is.

Produced by a «call to KeyStore.setKeyEntry(String alias, byte[] key,
Certificate[] chain) call.

The bouncycastle project appears to have completely abandoned these entry types well over a decade ago
now, and it is no longer possible to retrieve these entries through the Java APIs in any (remotely) recent
BC version.

* BksKeyEntry objects of type KEY_TYPE_SECRET store the result of a getEncoded() call on proper
Java objects of type SecretKey.

Produced by a call to KeyStore.setKeyEntry(String alias, Key key, char[]
password, Certificate[] chain).

The difference here is that the KeyStore implementation knows it’s getting a proper (Secret)Key Java
object, and can decide for itself how to store it given the password supplied by the user. L.e., in this version
of setKeyEntry it is left up to the keystore implementation to encode and protect the supplied Key object,
instead of in advance by the user.

key = None
A byte string containing the secret key/value.

is_decrypted ()
Always returns True for this entry type.

decrypt (key_password)
Does nothing for this entry type; these entries stored arbitrary user-supplied data, unclear how to decrypt
(may not be encrypted at all).

encrypt (key_password)
Encrypts the entry using the given password, so that it can be saved.

Parameters key_password (st r) — The password to encrypt the entry with.

classmethod new (alias)
Helper function to create a new KeyStoreEntry.

class jks.bks.BksSealedKeyEntry (**kwargs)
Bases: jks.bks.AbstractBksEntry

PBEWithSHA And3-KeyTripleDES-CBC-encrypted wrapper around a BksKeyEntry. The contained key
type is unknown until decrypted.

Once decrypted, objects of this type can be used in the same way as BksKeyEntry: attribute accesses are
forwarded to the wrapped BksKeyEnt ry object.

3.4. BouncyCastle Keystores (BKS and UBER) 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyJKS Documentation, Release 20.0.0

is_decrypted()

Returns True if the entry has already been decrypted, False otherwise.

decrypt (key_password)

Decrypts the entry using the given password. Has no effect if the entry has already been decrypted.
Parameters key_password (st r)— The password to decrypt the entry with.
Raises

* DecryptionFailureException — If the entry could not be decrypted using the
given password.

* UnexpectedAlgorithmException — If the entry was encrypted with an unknown
or unexpected algorithm

encrypt (key_password)

Encrypts the entry using the given password, so that it can be saved.
Parameters key_password (st r)— The password to encrypt the entry with.

classmethod new (alias)
Helper function to create a new KeyStoreEntry.

3.5 Exceptions

All exceptions related to keystore loading or parsing derive from a common superclass type KeystoreException.

3.5.1 Exception types

exception jks.util.KeystoreException

Bases: exceptions.Exception

Superclass for all pyjks exceptions.

exception jks.util.KeystoreSignatureException

Bases: jks.util.KeystoreException

Signifies that the supplied password for a keystore integrity check is incorrect.

exception jks.util.DuplicateAliasException

Bases: jks.util.KeystoreException

Signifies that duplicate aliases were encountered in a keystore.

exception jks.util.NotYetDecryptedException

Bases: jks.util.KeystoreException
Signifies that an attribute of a key store entry can not be accessed because the entry has not yet been decrypted.

By default, the keystore 1oad and 1oads methods automatically try to decrypt all key entries using the store
password. Any keys for which that attempt fails are returned undecrypted, and will raise this exception when its
attributes are accessed.

To resolve, first call decrypt() with the correct password on the entry object whose attributes you want to access.

exception jks.util.BadKeystoreFormatException

Bases: jks.util.KeystoreException

Signifies that a structural error was encountered during key store parsing.

22

Chapter 3. Contents:

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyJKS Documentation, Release 20.0.0

exception jks.util.BadDatalLengthException
Bases: jks.util.KeystoreException

Signifies that given input data was of wrong or unexpected length.

exception jks.util.BadPaddingException
Bases: jks.util.KeystoreException

Signifies that bad padding was encountered during decryption.

exception jks.util.BadHashCheckException
Bases: jks.util.KeystoreException

Signifies that a hash computation did not match an expected value.

exception jks.util.DecryptionFailureException
Bases: jks.util.KeystoreException

Signifies failure to decrypt a value.

exception jks.util.UnsupportedKeystoreVersionException
Bases: jks.util.KeystoreException

Signifies an unexpected or unsupported keystore format version.

exception jks.util.UnexpectedJavaTypeException
Bases: jks.util.KeystoreException

Signifies that a serialized Java object of unexpected type was encountered.

exception jks.util.UnexpectedAlgorithmException
Bases: jks.util.KeystoreException

Signifies that an unexpected cryptographic algorithm was used in a keystore.

exception jks.util.UnexpectedKeyEncodingException
Bases: jks.util.KeystoreException

Signifies that a key was stored in an unexpected format or encoding.

exception jks.util.UnsupportedKeystoreTypeException
Bases: jks.util.KeystoreException

Signifies that the keystore was an unsupported type.

exception jks.util.UnsupportedKeystoreEntryTypeException
Bases: jks.util.KeystoreException

Signifies that the keystore entry was an unsupported type.

exception jks.util.UnsupportedKeyFormatException
Bases: jks.util.KeystoreException

Signifies that the key format was an unsupported type.

3.5. Exceptions

23

PyJKS Documentation, Release 20.0.0

24

Chapter 3. Contents:

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

25

PyJKS Documentation, Release 20.0.0

26

Chapter 4. Indices and tables

Python Module Index

jks.bks, I5
jks. jks, 10
jks.util, 22

27

PyJKS Documentation, Release 20.0.0

28

Python Module Index

Index

A

algorithm (jks.bks.BksKeyEntry attribute), 20

algorithm (jks.jks.SecretKeyEntry attribute), 14

algorithm_oid (jks.bks.BksKeyEntry attribute), 19

algorithm_oid (jks.jks.PrivateKeyEntry attribute),
13

B

BadDataLengthException, 22
BadHashCheckException, 23
BadKeystoreFormatException, 22
BadPaddingException, 23
BksKeyEntry (class in jks.bks), 18
BksKeyStore (class in jks.bks), 15
BksSealedKeyEntry (class in jks.bks), 21
BksSecretKeyEntry (class in jks.bks), 21
BksTrustedCertEntry (class in jks.bks), 18

C

cert (jks.bks.BksTrustedCertEntry attribute), 18
cert (jks.jks.TrustedCertEntry attribute), 12
cert_chain (jks.jks.PrivateKeyEntry attribute), 13
certs (jks.bks.BksKeyStore attribute), 16

certs (jks.bks.UberKeyStore attribute), 17

certs (jks.jks.KeyStore attribute), 12

D

decrypt () (jks.bks.BksKeyEntry method), 20
decrypt () (jks.bks.BksSealedKeyEntry method), 22
decrypt () (jks.bks.BksSecretKeyEntry method), 21
decrypt () (jks.bks.BksTrustedCertEntry method), 18
decrypt () (jks.jks.PrivateKeyEntry method), 14
decrypt () (jks.jks.SecretKeyEntry method), 15

decrypt () (jks.jks.TrustedCertEntry method), 12
DecryptionFailureException, 23
DuplicateAliasException, 22

E

encoded (jks.bks.BksKeyEntry attribute), 20

encrypt () (jks.bks.BksKeyEntry method), 20
encrypt () (jks.bks.BksSealedKeyEntry method), 22
encrypt () (jks.bks.BksSecretKeyEntry method), 21
encrypt () (jks.bks.BksTrustedCertEntry method), 18
encrypt () (ks.jks.PrivateKeyEntry method), 14
encrypt () (jks.jks.SecretKeyEntry method), 15

encrypt () (jks.jks.TrustedCertEntry method), 12
entries (jks.bks.BksKeyStore attribute), 16
entries (jks.bks.UberKeyStore attribute), 17
entries (jks.jks.KeyStore attribute), 10

F

format (jks.bks.BksKeyEntry attribute), 20

is_decrypted () (jks.bks.BksKeyEntry method), 20
is_decrypted() (jks.bks.BksSealedKeyEntry

method), 21

is_decrypted() (jks.bks.BksSecretKeyEntry
method), 21

is_decrypted() (jks.bks.BksTrustedCertEntry
method), 18

is_decrypted () (jks.jks.PrivateKeyEntry method),

14
is_decrypted () (jks.jks.SecretKeyEntry method), 15
is_decrypted () (jks.jks.TrustedCertEntry method),
12

J

jks.bks (module), 15
jks. jks (module), 10
jks.util (module), 22

K

key (jks.bks.BksKeyEntry attribute), 20

key (jks.bks.BksSecretKeyEntry attribute), 21
key (jks.jks.SecretKeyEntry attribute), 14
key_size (jks.bks.BksKeyEntry attribute), 20
key_size (jks.jks.SecretKeyEntry attribute), 15

29

PyJKS Documentation, Release 20.0.0

KeyStore (class in jks.jks), 10
KeystoreException, 22
KeystoreSignatureException, 22

L

load () (jks.bks.BksKeyStore class method), 16
load () (jks.bks.UberKeyStore class method), 17
load () (jks.jks.KeyStore class method), 10
loads () (jks.bks.BksKeyStore class method), 16
loads () (jks.bks.UberKeyStore class method), 17
loads () (jks.jks.KeyStore class method), 10

N

new () (jks.bks.BksKeyEntry class method), 21

new () (jks.bks.BksSealedKeyEntry class method), 22
new () (jks.bks.BksSecretKeyEntry class method), 21
new () (jks.bks.BksTrustedCertEntry class method), 18
new () (jks.jks.KeyStore class method), 11

new () (jks.jks.PrivateKeyEntry class method), 13
new () (jks.jks.SecretKeyEntry class method), 15

new () (jks.jks.TrustedCertEntry class method), 12
NotYetDecryptedException, 22

P

pkey (jks.bks.BksKeyEntry attribute), 19
pkey (jks.jks.PrivateKeyEntry attribute), 13
pkey_pkcs8 (jks.bks.BksKeyEntry attribute), 19
pkey_pkcs8 (jks.jks. PrivateKeyEntry attribute), 13
plain_keys (jks.bks.BksKeyStore attribute), 16
plain_keys (jks.bks.UberKeyStore attribute), 17
private_keys (jks.jks.KeyStore attribute), 12
PrivateKeyEntry (class in jks.jks), 13
public_key (jks.bks.BksKeyEntry attribute), 19
public_key_info (jks.bks.BksKeyEntry attribute),
19

S

save () (jks.bks.BksKeyStore method), 16

save () (jks.bks.UberKeyStore method), 17

save () (jks.jks.KeyStore method), 11

saves () (jks.jks.KeyStore method), 12
sealed_keys (jks.bks.BksKeyStore attribute), 16
sealed_keys (jks.bks.UberKeyStore attribute), 17
secret_keys (jks.bks.BksKeyStore attribute), 16
secret_keys (jks.bks.UberKeyStore attribute), 18
secret_keys (jks.jks.KeyStore attribute), 12
SecretKeyEntry (class in jks.jks), 14
store_type (jks.bks.BksKeyStore attribute), 16
store_type (jks.bks.UberKeyStore attribute), 17
store_type (jks.jks.KeyStore attribute), 10

T

TrustedCertEntry (class in jks.jks), 12
type (jks.bks.BksKeyEntry attribute), 20

type (jks.bks.BksTrustedCertEntry attribute), 18
type (jks.jks.TrustedCertEntry attribute), 12
type2str () (jks.bks.BksKeyEntry class method), 20

U

UberKeyStore (class in jks.bks), 17
UnexpectedAlgorithmException, 23
UnexpectedJavaTypeException, 23
UnexpectedKeyEncodingException, 23
UnsupportedKeyFormatException, 23
UnsupportedKeystoreEntryTypeException,
23
UnsupportedKeystoreTypeException, 23
UnsupportedKeystoreVersionException, 23

Vv

version (jks.bks.BksKeyStore attribute), 16
version (jks.bks.UberKeyStore attribute), 18

30

Index

	Examples
	Installation
	Contents:
	Examples
	Concepts
	JKS and JCEKS keystores
	BouncyCastle Keystores (BKS and UBER)
	Exceptions

	Indices and tables
	Python Module Index
	Index

